This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Glass Transition Temperature of Poly-p-isopropyl- α -methylstyrene by Differential Scanning Calorimetry

S. L. Malhotra^a; Ly Minh^a; L. P. Blanchard^a

^a Département de Génie chimique Faculté des Sciences et de Génie, Université Laval Quebec, Que., Canada

To cite this Article Malhotra, S. L. , Minh, Ly and Blanchard, L. P.(1978) 'Glass Transition Temperature of Poly-p-isopropyl- α -methylstyrene by Differential Scanning Calorimetry', Journal of Macromolecular Science, Part A, 12: 1, 149 – 166

To link to this Article: DOI: 10.1080/00222337808081026 URL: http://dx.doi.org/10.1080/00222337808081026

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Glass Transition Temperature of Poly-p-isopropyl-α-methylstyrene by Differential Scanning Calorimetry

S. L. MALHOTRA, LY MINH, and L. P. BLANCHARD

Département de Génie chimique Faculté des Sciences et de Génie Université Laval Quebec (Que.), Canada G1K 7P4

ABSTRACT

Glass transition temperature (T_g) studies on poly-p-isopropyl- α -methylstyrene having \overline{M}_n values ranging from 5×10^3 to 1.53×10^5 were carried out with the DSC-2 differential scanning calorimeter. The variation of T_{ge} (at q = 1°K/min) with \overline{M}_n obeys the relation, T_{ge}(°K) = 422 - 3.6 × 10⁵ / \overline{M}_n . A comparison of T_{g_{\nu} values for polystyrene (379°K), poly- α -methylstyrene (453°K), and poly-p-isopropyl- α -methylstyrene (422°K) reveals that although the addition of an α -methyl group in polystyrene increases its T_{g_{\nu} from 379 to 453°K due to steric hindrance, the addition of the p-isopropyl group in poly- α -methylstyrene lowers it from 453 to 422°K due to reduced chain stiffness and smaller interchain steric hindrance. Poly-p-isopropyl- α -methylstyrene samples having similar \overline{M}_n but different T_g values are shown to possess different structures. The effect of polydispersity on T_g}}

Copyright © 1978 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

INTRODUCTION

Studies carried out in this laboratory on the glass transition temperature T_g of polystyrene [1] and of poly- α -methylstyrene [2] were reported on earlier. On replacing the methine proton of polystyrene with a methyl group in the α -position, the value of $T_{g_{\infty}}$ (the glass

transition temperature when the molecular weight goes to infinity) was found to increase. These results agree well with those reported by another group of workers [3]. The presence of substituents, such as halogens [4-6] and dimethyl- and diethylamines [7, 8], in the aromatic ring has also been shown to affect T_g values.

The presence of a halogen substituent in the ortho or para position increased T_g while in the meta position it decreased T_g [6]. Furthermore, the addition of a bulkier substituent such as tert-butyl in polystyrene showed a considerable increase in its T_g . The presence of

dimethyl- and diethylamines [7, 8] in the para position of the polystyrene aromatic rings yielded interesting results. While p-dimethylaminostyrene samples showed an increase in their T_g values compared

to that of their polystyrene counterpart, the diethylaminostyrene samples showed no significant changes.

With a view to studying the combined effects of other substituents both in the ring as well as on the side chain of polystyrene, glass transition measurements were made on poly-p-isopropyl- α -methylstyrene (PPIP α MS) samples of differing molecular weights. The principal results of these studies are given in the present paper.

EXPERIMENTAL

Materials

Anionically prepared [9-11] PPIPaMS samples showing unimodal gel permeation chromatographic (GPC) molecular weight distributions [9] and having number-average molecular weights \overline{M}_n ranging from 5×10^3 to 1.53×10^5 were used in the present study. PPIPaMS samples of series S were prepared in bulk at -25° C with a butyllithium-tetra-methylethylenediamine (BuLi-TMEDA) complex, whereas those of series F were the different fractions of the PPIPaMS sample K-1 polymerized at 25° C with an Na-K alloy [9]. The calibration of the GPC instrument was performed with PPIPaMS samples of low poly-dispersity, P_d ($\overline{M}_w/\overline{M}_n$), whose \overline{M}_w and \overline{M}_n values were calculated

GLASS TRANSITION TEMPERATURE. I

from their light scattering and membrane osmometry data respectively [10]. The structure and tacticity of the polymers were calculated from their nuclear magnetic resonance (NMR) spectra recorded in o-dichlorobenzene at 100° C [11] as well as in CCl₄ at 75°C with tetramethylsilane as the internal standard in both cases.

T_g Measurements

 T_g values were measured [2] with a Perkin-Elmer DSC-2 differential scanning calorimeter. For each T_g measurement 10 mg of polymer sample was used. In order to have a homogeneous polymer sample, the sample was heated for a few seconds to a temperature 30° K above T_g (estimated from a preliminary run), after which it was quenched through the glass transition region at a rate of 320° K/min as suggested in the literature [12]. After quenching, T_g was determined by heating the sample at different heating rates.

RESULTS AND DISCUSSION

In Fig. 1 are shown typical DSC-2 thermograms of unannealed PPIP α MS (sample F-7) obtained in the glass transition region at different heating rates q. The values of T_{σ} measured at $\Delta C_n/2$ [12],

FIG. 1. Typical DSC-2 thermograms of unannealed poly-pisopropyl- α -methylstyrene (sample F-7) obtained in the glass transition region at various heating rates: (1) 40°K/min; (2) 20°K/min; (3) 10°K/min.

TA	BLE 1. Infl	luence of Heatir	ng Rate q and $\overline{\mathrm{M}}_{\mathrm{n}}$	on the Tg of Po	oly-p-isopropyl-	- <i>a</i> -methylstyrene
				T _g (°K)		T _g (°K)
Sample	$\overline{M}_n \times 10^{-3}$	$\overline{P}_{d} = \overline{M}_{w} / \overline{M}_{n}$	q = 40°K/min	$q = 20^{\circ} K/min$	$q = 10^{\circ} K/min$	at q = 1°K/min ^a
S-4	5	3.0	364	362	360	353
S-14	9	1.3	379	375	373	363
S-13	6.5	1.6	375	371	370	361
S-2	6	1.6	410	403	401	386
S-21	6	1.4	397	392	390	378
S-11	10.5	3.2	375	372	371	364
S-10	10.5	1.1	406	403	402	395
S-8	12	1.2	409	406	404	396
F-8	16	2.1	409	404	403	393
S-20	18	1.3	420	414	411	396
S-22	19	1.4	413	407	404	388
S-5	22	1.8	429	424	422	411
S-16	22	2.2	418	413	408	392
S-18	22	2.1	423	419	417	407
S-9	24	1.6	420	416	414	404
S-23	24	1.8	398	394	390	377
F-7	30	2.2	427	422	420	408

, -. ÷ È . F 4 2 2 è 4 t H Infli

MALHOTRA, MINH, AND BLANCHARD

.

399	395	408	414	410	418	423	420	
406	406	419	423	422	426	431	425	,
408	408	421	425	425	428	433	426	
410	412	426	429	429	431	436	428	
2.4	2.3	4.1	3.3	4.0	3.9	3.3	3.8	
32	40	47	47	68	70	130	153	
S-27	S-17	S-1	F-6	S-15	F-5	S-25	S-19	

^aExtrapolated values by using the equation: $\log q = a - b/T_g [1]$.

FIG. 2. Extrapolated T_g values (to q = 1) as a function of \overline{M}_n . See Table 1 for other data.

were found to increase with increasing heating rate. To compare the DSC data with that obtained for other substituted styrenes, a standard procedure was adopted whereby T_g values measured at different q rates were extrapolated to a q value of 1°K/min by using a plot of log q versus $1/T_g$. The principal results on the T_g of PPIP α MS are summarized in Table 1. The values of T_{g_e} were found to increase with increasing $\overline{M_n}$.

In Fig. 2 is shown a plot of T_{g_e} as a function of \overline{M}_n . T_{g_e} increases up to a point beyond which it remains essentially constant $(T_{g_{\infty}})$. The critical value of the molecular weight is in the vicinity of 1.0×10^5 .

In Fig. 3 is shown a plot of T_{g_e} as a function of $1/\overline{M}_n$ which yielded a straight line corresponding to Eq. (1).

$$T_{ge}(^{\circ}K) = 422 - 3.6 \times 10^{5} / \overline{M}_{n}$$
 (1)

In earlier work from this laboratory [1, 2], T_{g_e} of polystyrene (PS) [Eq. (2)] and poly-*a*-methylstyrene (PaMS) [Eq. (3)] were related to $\overline{M_n}$ respectively as follows:

FIG. 3. Extrapolated T_g values (to q = 1) as a function of $1/M_n$. See Table 1 for other data.

$$T_{g_{e}}(^{\circ}K) = 379 - 2.1 \times 10^{5}/\overline{M}_{p}$$
 (2)

and

$$T_{g_e}(^{\circ}K) = 453 - 3.1 \times 10^5 / \overline{M}_n$$
 (3)

The addition of a methyl substituent in the α position increased the value of $T_{g_{\infty}}$ from 379°K (for PS) to 453°K (for PaMS); however, the further addition of an isopropyl substituent in the paraposition decreased the value of T_g from 453°K (for PaMS) to 422°K (for PPIPaMS). Normally one would have expected PPIPaMS to have had a higher $T_{g_{\infty}}$ value than that of PaMS, because of the presence of the bulkier p-substituent in the former polymer. Similar results are reported on the $T_{g_{\infty}}$ of N,N-dimethylaminostyrene [7] and N,N-diethyl-aminostyrene [8], where the T_g of the latter polymer, in spite of the presence of a bulkier p-substituent than present on the former, has a relatively lower value.

These authors [7, 8] reported that the $T_{g_{\infty}}$ of N,N-dimethylaminostyrene is about 50° higher than that of polystyrene because of the presence of (a) the dipolar interactions between the substituted phenyl groups on the same and adjacent chains resulting in an overall chain stiffness and (b) increased interchain steric hindrance. Replacing the methyl groups of the N,N-dimethylaminostyrene by ethyl groups increases the bulkiness and flexibility of the N,N-dialkyl substituent thereby reducing the interchain steric hindrance as well as the chain stiffness and consequently reducing the value of $T_{g_{co}}$.

The prime reason for ascribing these variations in $T_{g_{res}}$ to the im-

proved flexibility of chains and reduced steric hindrances due to the bulk size of the substituents, rather than the free volume (θ) contribution of each chain end (θ), arises out of the fact that θ (calculated from Bueche's [13] equation relating the slope K in the plot of T_{ge} as a

function of $1/\overline{M}_n,$ the polymer density ρ , and the difference $\Delta \alpha$ in the

expansion coefficients in the liquid and the glass states) increases regularly from 80 Å³ to 108 Å³ to 134 Å³ on changing from polystyrene to poly-N,N-dimethylaminostyrene and finally to poly-N,N-diethylaminostyrene but the Tg_m yielded values of ~100°C, ~150°C

and $\sim 100^{\circ}$ C, respectively. It would appear that the effect of the changes in the free volume of the polymer chain ends, due to increasing molecular weights, is small when compared to the swept free volume [8] associated with the bulkier para substituent.

The free volume θ in the case of PPIPaMS obtained from the K value of 3.6×10^5 and $\rho = 0.89$ (calculated from the molar volume data of the polymer [14] is about 100 Å³. The θ values of PS and PaMS are 80 Å³ [13] and 85 Å³ [3]. The T_g values of these three poly-

mers, viz., PS, PaMS, and PPIPaMS, however, do not follow the increasing θ trend but show values of 379°K [1], 453°K [2], and 422°K, respectively. This indicates that, like the other study on the T_g of poly-N,N-diethylaminostyrene [8], the presence of a bulkier

substituent in PPIPaMS increases the flexibility of chains, thus causing better chain packing, less steric hindrance, and consequently lower T_{g_∞} .

Structure of PPIP α MS and Its Relation with T_g

<u>Structure Determination</u>. In an earlier study related to the polymerization of PIPaMS with BuLi-TMEDA [9, 11] it was reported that the ratios of the various types of protons (as calculated from the NMR spectra recorded in o-dichlorobenzene) in the polymers did not necessarily correspond to those observed in the monomer. For instance, in p-isopropyl-a-methylstyrene (PIPaMS) the ten proton-proton ratios, viz., iso-CH₃/H_B, iso-CH₃/a-CH₃, iso-CH₃/ β -CH₂, iso-CH₃/CH, H_B/a-CH₃, H_B/ β -CH₂, H_B/CH, a-CH₃/ β -CH₂, α -CH₃/CH and β -CH₉/CH are 1.5, 2, 3, 6, 1.3, 2, 4, 1.5, 3, 2, respec-

tively. In a high molecular weight polymer, S-25, prepared with BuLi-TMEDA, these ratios were found to be 1.5, 1.6, 2.4, 5.8, 1.0, 1.5, 3.8, 1.5, 3.6, and 2.4, respectively. On the basis of these studies it was reported that the irregular structures in S-25 may have their origin from two possible reactions: isomerization involving the methine protons of the isopropyl group [15] and substitution or metalation in the benzene ring.

Keeping this in mind, the structures of most of the polymers used in the present study were carefully investigated so that a relation between $T_{g_{e}}$ and the molecular weight \overline{M}_{n} might be established using

only the data of polymers having similar proportions of the various protons. The approach used, however, was slightly different in the present case where, instead of calculating the ten proton-proton ratios, the number of different types of protons per monomer unit were calculated for all polymers and compared with those in the regular polymer of infinite molecular weight (4 $H_{\rm p}$, 1 CH, 2 β -CH₂, 6 iso-

 CH_3 and 3 α - CH_3). The highlights of the NMR spectra recorded in

o-dichlorobenzene at 100°C and in CCl₄ at 75°C are presented in Table 2. In o-dichlorobenzene, the zones where the resonances of different protons appear, are better defined than for the case when CCl₄ is the solvent where the contribution due to β -methylenes, isomethyls, and α -methyls is sometimes difficult to separate. Furthermore, in CCl₄, a part of the resonance due to rr triads is merged with that due to the internal standard TMS.

Based on these assignments, in Tables 3 and 4 are presented the structure analyses of the polymers from series S and F used in this study. The analyses presented in Table 3 (in o-dichlorobenzene) were carried out by adding the integrals of all of the protons situated between 7.0 and 10.0 τ and dividing the sum by 12 (1 CH, 2 CH₂, 6 iso-CH₃, 3 α -CH₃) which yielded a value corresponding to one proton and consequently the number of protons per monomer unit for different types of protons. The data listed in Table 4 were calculated for the region between 3 to 10 τ and by dividing the sum integral of this zone by 16 (4 H_B, 1 CH, 2 CH₂, 6 iso-CH₃, 3 α -CH₃). This gave a value for one

proton which was used in analyzing different types of protons.

The structure analyses for all the polymers in Table 3 reveal the following information: (a) the number of CH protons remains constant at 1.0; (b) the number of β -methylenes increases and varies between 2.1 and 2.45; (c) the number of iso-CH₃ decreases and varies between 5.1 and 5.8; (d) the α -CH₃ protons show an increase, except in a few cases where these decrease (S-13 and S-9) or remain constant (S-20 and F-7); and (e) the propagation step for most polymers does not deviate much from Bernoullian statistics $P_{m/r} + P_{r/m} \leq 1$ [16].

Downloaded At: 08:43 25 January 2011

TABLE 2. NMR Parameters for Poly-p-isopropyl-a-methylstyrene in o-Dichlorobenzene and Carbon Tetrachloride.

		T
Type of proton	o-Dichlorobenzene [11]	Carbon tetrachloride
Benzene (<u>H</u> B)		3.0-4.1
Methine $\begin{pmatrix} -CH \\ - \end{pmatrix}$	7.05-7.4	7.0-7.5
Methylene (-CH ₂)	7.9-8.6	7.8-8.7
Methyls of { -CH / / ` isopropyl { H ₃ C CH ₃	8.7-9.9	8.7-9.0
Methyl (a) (–CH _s)	9.0-9.9 9.06 (mm), 9.4 (mr), 9.7 (rr)	9.0-10.0 9.23 (mm), 9.57 (mr), 9.88 (rr)

2011
January
25
08:43
At:
ownloaded
Ã

 \mathbf{r}/\mathbf{m} 0.320.400.420.350.380.410.38 0.38 0.370.38 0.400.39 0.320.370.30Propagation statistics ۵ m/r0.52 0.53 0.46 0.53 0.56 0.57 0.47 0.54 0.56 0.57 0.51 0.56 0.51 0.55 0.51 ሲ 0.35 0.430.45 0.420.360.37 0.360.320.320.400.31 0.36 0.37 0.37 0.34 Intensity of triads гr due to a-methyl 0.45 0.450.430.430.44 0.440.460.46 0.440.41 0.390.39 0.430.47 0.43 Br 0.25 0.19 0.18 0.20 0.17 0.200.16 0.16 0.19 0.25 0.20 mm 0.210.17 0.21 0.21 CH2--Structure of polymer per monomer unit $+ \alpha - CH_3$ CH H₃C 3.2 3.5 2.9 3.2 3.2 3.0 3.2 2.8 3.3 3.6 3.0 3.3 3.4 3.4 3.1 CH₃ HC <u>H</u>₃C 5.3 5.8 5.4 5.3 5.4 5.7 5.65.8 5.7 5.4 5.4 5.7 5.3 5.1 5.1 -CH₂-2.2 2.3 2.22.3 2.3 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.5 2.1 2.4 _H_ 1.0 2.0 0.1 0.1 0.1 0.1 2 1.0 2 2.1 0.1 0.1 1.0 2.1 .0 Sample S-23 S-20 S-16 S-10 S-11 S-22 S-18 S-27 S-13 F-7 S. φ 8-9 S-5 S-4 S-2

TABLE 3. NMR Characterization of Poly-p-isopropyl-a-methylstyrene^a

GLASS TRANSITION TEMPERATURE, I

(continued)

TABLE 3 (continued)

Downloaded At: 08:43 25 January 2011

	Strı	ucture of pc	olymer per mo	onomer unit					
			CH	CH CH	Inter due	isity of the to a me	riads thyl	Propa stati	gation stics
Sample	–H–	-CH ₂ -	$\underline{H_3C}$ $\underline{CH_3}$	$\frac{H}{1}\alpha$ - CH ₃	um	mr	rr	$\mathbf{P}_{\mathbf{m/r}}$	$\mathbf{p}_{\mathbf{r}/\mathbf{m}}$
S-17	1.0	2.4	5.5	3.1	0.17	0.44	0.39	0.56	0.36
F-6	1.0	2.3	5.7	3.1	0.15	0.40	0.45	0.57	0.31
S-15	1.0	2.25	5.35	3.35	0.18	0.41	0.41	0.53	0.33
F-5	1.0	2.45	5.15	3.35	0.17	0.38	0.45	0.57	0.31
S-25	1.0	2.25	5.4	3.4	0.19	0.48	0.33	0.49	0.37

^aData of Léonard and Malhotra [11]. Spectra were recorded in o-dichlorobenzene at 100°C.

Downloaded At: 08:43 25 January 2011

TABLE 4. NMR Characterization of Poly-p-isopropyl-a-methylstyrene^a

Structure of polymer per monomer unit

			•	ı						
				CH	CH CH	Inter due	ısity of to α-me	triads thyl	Propa statis	gation stics
Sample	C ₆ H ₄	-CH	-CH ₂ -	H ₃ C CH ₃	$\frac{H_3}{+} \alpha - CH_3$	ШШ	mr	rr	$\mathbf{p}_{\mathbf{m/r}}$	$\mathbf{p}_{\mathbf{r}/\mathbf{m}}$
S-4	3.7	1.0	2.8	5.6	0.5 + 2.3	0.15	0.45	0.40	0.60	0.36
S-14	3.8	0.9	2.05	6.15	0.35 + 2.7	0.17	0.47	0.36	0.58	0.39
S-13	3.8	0.95	2.35	6.0	0.25 + 2.65	0.20	0.47	0.33	0.54	0.41
S-2	4.0	1.05	2.1	6.05	2.85	0.17	0.45	0.38	0.57	0.37
S-21	3.7	0.9	1.9	6.15	0.4 + 2.9	0.17	0.47	0.36	0.58	0.39
S-11	4.0	1.0	2.2	5.8	3.0	0.25	0.43	0.32	0.46	0.40
S-8	3.9	0.95	2.0	6.0	0.2 + 3.0	0.17	0.45	0.38	0.57	0.37
S-20	3.9	1.0	2.0	6.05	3.05	0.21	0.43	0.36	0.50	0.37
S-22	3.8	0.9	2.2	6.1	3.0	0.18	0.45	0.37	0.55	0.38
S-9	3.8	0.85	1.9	6.2	3.2	0.22	0.44	0.34	0.50	0.39
S-5	3.95	1.0	2.0	5.85	0.2 + 3.0	0.18	0.46	0.36	0.56	0.39
S-16	3.7	0.85	2.7	5.75	3.0	0.22	0.44	0.34	0.50	0.39
S-18	4.0	0.8	2.4	5.3	0.3 + 3.2	0.17	0.47	0.36	0.58	0.39
S-23	3.8	1.0	2.4	6.0	2.7	0.18	0.45	0.37	0.55	0.38
S-27	3.8	1.0	2.3	6.0	2.8	0.17	0.40	0.43	0.54	0.32
									(00)	ntinued)

GLASS TRANSITION TEMPERATURE. I

2011
January
25
08:43
At:
Downloaded

TABLE 4 (continued)

ymer per monon CH H_3C CH_3 6.0 5.9 6.1 5.7	re of polymer per monon $-CH_{2} - H_{3}C$ CH_{3} $2.2 6.0$ $2.4 5.9$ $2.4 5.9$ $2.05 6.1$ $2.0 5.7$	ner unit	CH Intensity of triads Propagation / \ due to <i>a</i> -methyl statistics H ₂ C CH ₂ -	$\frac{1}{1+\alpha} CH_3$ mm mr rr $P_{m/r}$ $P_{r/m}$	2.9 0.19 0.44 0.37 0.54 0.37	2.6 0.17 0.44 0.39 0.56 0.36	2.95 0.13 0.45 0.42 0.63 0.35	3.4 0.21 0.44 0.35 0.51 0.39
yme	-CH ₂ - -CH ₂ - 2.2 2.4 2.05 2.0	r per monomer u	CH / / H-(H_3C CH_3 $+ c$	6.0 2.5	5.9 2.6	6.1 2.5	5.7 3.4
	-CH2- -CH2- 2.2 2.4 2.05 2.05	ymer per monoi	CH	H ₃ C CH ₃	6.0	5.9	6.1	5.7
Structu -CH 0.9 1.0 0.95 0.85				C ₆ H ₄	3.9	4.0	4.0	4.0
Structu C ₆ H ₄ -C _H 3.9 0.9 4.0 1.0 4.0 0.95 4.0 0.85	C ₆ H ₄ 3.9 4.0 4.0			Sample	S-17	S-1	S-15	S-19

^aSpectra were recorded in CCI_4 at $75^{\circ}C$.

On the other hand, the analyses presented in Table 4 show a slightly different picture. Most of the polymers listed in Table 4 (with the exception of S-4, S-16, S-18, and S-19 where the β -methylenes increase and iso-CH₃ decrease) appear to be regular or very close to being regular products. The propagation step analyses, however, agree well with those obtained from the spectra in o-dichlorobenzene and show little deviation from Bernoullian statistics.

As it is difficult to distinguish which of these analyses is the more accurate, both have been retained for the present study.

Effect of Structural Differences on Tg. In Table 5

is presented a comparison (in the form of increase or decrease) of the number of different protons in the various PPIP α MS samples with those in the regular polymer. An increase in the number of a given type of protons is represented by (-), a decrease by (-), and a no change by (=). An examination of the results in Table 5 reveals that polymers with the same \overline{M}_n and more or less the same \overline{P}_d (S-2, S-21), (S-15, F-5), and (S-5, S-16, S-18) but exhibiting different T_{g_o} values have different structures. Although it is difficult to establish the exact contribution of each proton type towards T_{g_e} a general pattern may be established. It would appear that in polymers with identical \overline{M}_n and \overline{P}_{d} values, the one exhibiting the lower $T_{g_{e}}$ has the following characteristics: a smaller number of benzene protons (S-21, S-16 and S-23) due to some substitution or the initiation of new chains in the ring (aromatic groups have been shown to contribute more towards T_{g} than aliphatic groups [17]); a lesser number of isopropyl groups converted to $-CH(CH_3)CH_2-$ (S-15), which appear to elevate T_{α} (F-5) (this finds support from earlier results which show that the addition of isopropyl groups at the para position in PaMS lowers its $T_{g_{\infty}}$ from

453°K to 422°K); a lesser number of α -CH₃ groups (S-23) which increase T_g (S-18) (T_g of PS = 379°K and of P α MS = 453°K).

Polymers having the same \overline{M}_n and similar structures may also have different T_{g_e} values if their polydispersity ratios are different (S-1, F-6), (S-15, F-5). It would appear that the shorter chain segments in the polydispersed polymers initiate and bring about the transition at a lower temperature.

Although most of the polymers studied agree well with the general trends of structure and polydispersity effects, samples S-23 and S-11 are the exceptions. Polymer S-23 has the same \overline{M}_n , slightly different structure, and a higher \overline{P}_d as compared to that of S-9 but shows a T_{g_e} value which is 27°K lower than that of S-9. On the other hand, polymer

	TABLE 5.	Effect	of Structi	ural Diffe	erences	(Data of T	ables 3	and 4) a	ind $\overline{\mathrm{P}}_{\mathrm{d}}$ on T	50
				IJ	nanges ir	n proton c	ontent of	f PPIPa	SM	
			T _{ge} at				 	Н		
Sample	$\widetilde{M}_{\rm n} \times 10^{^-3}$	$\overline{\mathbf{p}}_{\mathbf{d}}$	q = 1 (°K)	C ₆ H ₄	-CH	-CH ₂ -	H ₃ C /	CH ₃	α - CH ₃	Comments
[S-2	6	1.6	386	П	t	t	ł		+	
l s-21	6	1.4	378	ŧ	ł	ţ	t		t	
[S-20	18	1.3	396	11	и	it	11		11	
[S-22	19	1.4	388	ŧ	ŧ	t	ł		11	m-11~ 4
Γ S-5	22	1.8	411	11	11	ii	ŧ		t	1 4016 4
S-16	22	2.2	392	ŧ	ŧ	t	4			
L S-18	22	2.1	407	11	ł	t	ł		t	
۲ S-9	24	1.6	404	ţ	ł	ŧ	t		t	
[S-23	24	1.8	377	ţ	II	t	11			
ΓS-15	68	4.0	410	ı	11	t	ŧ		ب۔ t	Table 3
[F-5	70	3.9	418	ı	II	tt	+ +		, t	I dute o
∫ S-11	10.5	3.2	364	ı	II	t	ł		۲	Tahla 3
L S-10	10.5	1.1	395	I	tt	t	ŧ		, t	14010 0
[S-1	47	4.1	408	ı	II	t	ŧ		 ۱	Table 3
[F-6	47	3.3	414	ı	11	t	ŧ		 1	Table 4

164

S-11 has same \overline{M}_n but a higher \overline{P}_d as compared to that of S-10; yet the T_g of the former is 30°K lower than that of the latter. A difference of this magnitude in T_g cannot be ascribed solely to the high polydispersity index of S-11. These results show that besides \overline{M}_n , \overline{P}_d , and structural and configurational differences there are other parameters which must control T_g .

Further work on the effects of other substituents on T_g is in progress and the results of these studies will be reported on in due course.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial assistance received from the National Research Council of Canada, the Department of Education of the Government of Quebec and Laval University.

The work described in this paper forms part of the general research program undertaken by the Groupe de Recherches en Sciences Macromoléculaires at Laval University.

REFERENCES

- [1] L. P. Blanchard, J. Hesse, and S. L. Malhotra, <u>Can. J. Chem.</u>, 52, 3170 (1974).
- [2] S. L. Malhotra, L. Minh, and L. P. Blanchard, J. Macromol. Sci.-Chem., A12, 167 (1978).
- [3] J. M. G. Cowie and P. M. Toporowski, <u>Eur. Polym. J.</u>, 4, 621 (1968).
- [4] R. W. Lenz, J. Macromol. Sci.-Chem., A9, 945 (1975).
- [5] R. W. Lenz and L. C. Westfelt, J. Polym. Sci. Polym. Chem. Ed., 14, 2147 (1976).
- [6] J. B. Enns, R. F. Boyer, and J. K. Gillham, paper presented to Division of Polymer Chemistry, American Chemical Society Meeting, 1977; Polym. Preprints, 18, 475 (1977).
- [7] R. H. Still and A. Whitehead, J. Appl. Polym. Sci., 20, 627 (1976).
- [8] S. Oprea and R. H. Still, J. Appl. Polym. Sci., 20, 637 (1976).
- [9] J. Léonard and S. L. Malhotra, J. Macromol. Sci.-Chem., A11, 2087 (1977).
- [10] S. L. Malhotra, J. Leonard, and E. Ahad, <u>Eur. Polym. J.</u>, in press.
- [11] J. Leonard and S. L. Malhotra, J. Polym. Sci. Polym. Chem. Ed., <u>12</u>, 2391 (1974).

- [12] W. P. Brennan, Perkin-Elmer DSC-2 Instruction Manuals, 7 and 8, Norwalk, Conn., 1973.
- [13] F. Bueche, Physical Properties of Polymers, Interscience, New York, 1962.
- [14] S. L. Malhotra, J. Leonard, and P. E. Harvey, <u>J. Macromol.</u> Sci.-Chem., A11, 2199 (1977).
- [15] H. Yuki, K. Kosai, and K. Ohtsu, <u>Kogyo Kagaku Zasshi</u>, <u>70</u>, 1963 (1967).
- [16] F. A. Bovey, <u>High Resolution NMR of Macromolecules</u>, Academic Press, New York, 1972.
- [17] H. G. Weyland, P. J. Hoftyzer, and D. W. Van Krevelen, <u>Polymer</u>, <u>11</u>, 79 (1970).

Accepted by editor December 1, 1977 Received for publication December 7, 1977